• blogs
  • Introduction
  • 学习 SVG
  • haversine-formula.md
  • Spark 学习笔记
    • spark-submit
  • python
    • range&xrange
    • requests
    • learning-python
    • numpy
  • Machine Learning
    • The Method of Least Squares
  • 学外语
    • English
      • 流利说
      • Essay
  • 机器学习杂记
    • socket.error
    • LSTM
    • 深度学习的演化历史
    • CTC 学习笔记
    • yolo
    • object-detection-nms
  • latex
    • katex
  • SQLite
    • data-types
  • cs231n 学习笔记
    • setup
  • Git
    • reset
  • Tools
    • gitbook to pdf/epub/mobi
  • xgboost
    • basic_walkthrough
    • customise-loss-function
    • boost from prediction
    • generalized linear model
    • cross validation
    • predict leaf indices
    • binary classification
    • multiclass classification
    • 原理杂记
    • dump model
  • pandas
    • DataFrame
    • merge multi dataframe by using reduce
  • 决策树
    • 手写决策树
    • Decision Tree or Classification and Regression Tree(CART)
    • Gradient Boosting Decision Tree
    • Random Forest
    • gbdt
  • maven
    • 学习 maven
  • Docker
    • 读 《Docker in action》
    • Docker 常用命令
  • svm
    • Linear Programming
  • leetcode
    • 137.single_number_II.md
    • DFS & BFS
    • 86.PartitionList
    • 155.Min_Stack(用差值来记录 Stack 中的最小值和当前值信息)
    • 错题本
      • 162.find-peak-element
      • 164.maximum-gap
      • 894.all-possible-full-binary-trees
      • 897.increasing-order-search-tree.md
      • 3.longest-substring-without-repeating-characters.md
      • 6.zigzag-conversion.md
      • 256.paint-house
    • 894.all-possible-full-binary-trees
    • 896.monotonic-array.md
    • 903.valid-permutations-for-di-sequence.md
    • 219.Contains-Duplicate-II.md
    • 406.Queue Reconstruction by Height
    • 159.Longest Substring with At Most Two Distinct Characters
  • 读闲书
    • 读书清单
  • Coursera
    • 机器学习-Andrew Ng
      • week 2
      • week 3
      • week 4
      • week 6
      • bias vs. variance
  • 排序算法
    • 基数排序(radix sort)
  • 电影
    • marvel
  • photography
    • iphone
  • pointers-on-c
  • Computer Science
    • Stack and Heap
  • C Plus Plus
    • Polymorphism
  • cnn
  • Photography
    • exposure
Powered by GitBook

yolo

Yolo

IoU(Intersection of Union)

IoU(A,B)=A∩BA∪B IoU(A, B) = \frac{A \cap B}{A \cup B} IoU(A,B)=​A∪B​​A∩B​​

参考

https://medium.com/@manivannan_data/how-to-train-yolov2-to-detect-custom-objects-9010df784f36 https://arxiv.org/pdf/1506.02640.pdf https://medium.com/@chenchoulo/yolo-%E4%BB%8B%E7%B4%B9-4307e79524fe https://stackoverflow.com/questions/49535301/understanding-the-loss-function-in-yolo-v1-research-paper https://stats.stackexchange.com/questions/287486/yolo-loss-function-explanation https://www.kaggle.com/kmader/component-labeling-with-yolo-and-pretraining

object detection overview https://mp.weixin.qq.com/s?src=11&timestamp=1541228910&ver=1220&signature=sJ39lJeRuCY5QTL7arSsb6O38O08H*s-au1E1h0Rl2c5GW6eHE-f3LJdHBv4gx9D*zs7u-Qp7hwjnD*oeDzUEmxfQTkPPfYttu8C7Kz*5s0vNlClbu6SLo26h-wOahgP&new=1

results matching ""

    No results matching ""