import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Rectangle
from itertools import cycle
cycol = cycle('bgrcmk')
dets = np.random.rand(3, 5) + [0,0,1,1,0]
dets /= 2
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline."""
for i in range(dets.shape[0]):
a,b,c,d,e = dets[i]
plt.gca().add_patch(
plt.Rectangle((a,b),c - a,d - b, facecolor = 'green', fill = False,
edgecolor='r', linewidth=3)
)
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
for i in range(len(xx1)):
plt.gca().add_patch(
plt.Rectangle((xx1[i],yy1[i]),xx2[i] - xx1[i],yy2[i]- yy1[i], facecolor = 'black', fill = False,
edgecolor=cycol.next(), linewidth=3)
)
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
plt.show()
return keep
py_cpu_nms(dets, 1)
[1, 0, 2]